Altinkaynak, E. (2022). Hands-Free Crutch Reduces the Muscle Atrophy Attributed to Non-Weight Bearing Injuries. https://doi.org/10.31219/osf.io/qac95.
Barth, U., Wasseroth, K., Halloul, Z., & Meyer, F. (2019). Alternative Mobilization by Means of a Novel Orthesis in Patients after Amputation. Zeitschrift für Orthopädie und Unfallchirurgie, 158(01), 75-80.
Bateni, H., & Maki, B. E. (2005). Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Archives of physical medicine and rehabilitation, 86(1), 134-145.
Bennett, B. C., Russell, S. D., Sheth, P., & Abel, M. F. (2010). Angular momentum of walking at different speeds. Hum Mov Sci, 29(1), 114-124. https://doi.org/10.1016/j.humov.2009.07.011
Bhambani, Y., & Clarkson, H. (1989). Acute physiologic and perceptual responses during three modes of ambulation: walking, axillary crutch walking, and running. Archives of physical medicine and rehabilitation, 70(6), 445-450.
Bleeker, M. W., Hopman, M. T., Rongen, G. A., & Smits, P. (2004). Unilateral lower limb suspension can cause deep venous thrombosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 286(6), R1176-R1177.
Booth, F. W. (1982). Effect of limb immobilization on skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol, 52(5), 1113-1118. https://doi.org/10.1152/jappl.1982.52.5.1113
Booth, F. W., & Gollnick, P. D. (1983). Effects of disuse on the structure and function of skeletal muscle. Med Sci Sports Exerc, 15(5), 415-420.
Bradley, A. P., Roehl, A. S., McGrath, R., Smith, J., & Hackney, K. J. (2022). Popliteal Blood Flow With Lower-Extremity Injury Mobility Devices. Foot Ankle Orthop, 7(4), 24730114221142784. https://doi.org/10.1177/24730114221142784
Bradley, A. P., Roehl, A. S., Smith, J., McGrath, R., & Hackney, K. J. (2023). Muscle specific declines in oxygen saturation during acute ambulation with hands-free and conventional mobility devices. Front Sports Act Living, 5, 1210880. https://doi.org/10.3389/fspor.2023.1210880
Bradley, S. M., & Hernandez, C. R. (2011). Geriatric assistive devices. American family physician, 84(4), 405-411.
Broderick, B. J., O’Briain, D. E., Breen, P. P., Kearns, S. R., & Olaighin, G. (2009). A hemodynamic study of popliteal vein blood flow: the effect of bed rest and electrically elicited calf muscle contractions. Annu Int Conf IEEE Eng Med Biol Soc, 2009, 2149-2152. https://doi.org/10.1109/IEMBS.2009.5332561
Canter, D. J., Reidy, P. T., Finucan, T., & Timmerman, K. L. (2023). A comparison of energy expenditure and perceived exertion between standard axillary crutches, knee scooters, and a hands-free crutch. PM R. https://doi.org/10.1002/pmrj.13109
Chiodo, C. P., Macaulay, A. A., Palms, D. A., Smith, J. T., & Bluman, E. M. (2016). Patient compliance with postoperative lower-extremity non-weight-bearing restrictions. JBJS, 98(18), 1563-1567.
Ciufo, D. J., Anderson, M. R., & Baumhauer, J. F. (2019). Impact of Knee Scooter Flexion Position on Venous Flow Rate. Foot & Ankle International, 40(1), 80-84.
Clark, B. C. (2009). In vivo alterations in skeletal muscle form and function after disuse atrophy. Medicine and science in sports and exercise, 41(10), 1869-1875.
Clark, B. C., Manini, T. M., Ordway, N. R., & Ploutz-Snyder, L. L. (2004). Leg muscle activity during walking with assistive devices at varying levels of weight bearing. Archives of physical medicine and rehabilitation, 85(9), 1555-1560.
Dalton, A. J., Maxwell, D. G., Kreder, H. J., & Borkhoff, C. M. (2002). Prospective clinical evaluation comparing standard axillary crutches with the hands free crutch. Physiotherapy Canada, 54(2), 110-115.
De Boer, M. D., Seynnes, O. R., Di Prampero, P. E., Pišot, R., Mekjavić, I. B., Biolo, G., & Narici, M. V. (2008). Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. European journal of applied physiology, 104(2), 401-407.
Dewar, C., Grindstaff, T., Farmer, B., Sainsbury, M., Gay, S., Kroes, W., & Martin, K. (2021). EMG Activity With Use of a Hands-Free Single Crutch vs a Knee Scooter. Foot & Ankle Orthopaedics, 6(4), 1-8. https://doi.org/https://doi.org/10.1177/24730114211060054
Dewar, C., & Martin, K. D. (2020). Comparison of Lower Extremity EMG Muscle Testing With Hands-Free Single Crutch vs Standard Axillary Crutches. Foot & Ankle Orthopaedics, 5(3), 2473011420939875.
Dounis, E., Rose, G., Wilson, R., & Steventon, R. (1980). A comparison of efficiency of three types of crutches using oxygen consumption. Rheumatology, 19(4), 252-255.
Faghri, P. D., Van Meerdervort, H. P., Glaser, R. M., & Figoni, S. F. (1997). Electrical stimulation-induced contraction to reduce blood stasis during arthroplasty. IEEE Transactions on Rehabilitation Engineering, 5(1), 62-69.
Faruqui, S. R., & Jaeblon, T. (2010). Ambulatory assistive devices in orthopaedics: uses and modifications. J Am Acad Orthop Surg, 18(1), 41-50. https://doi.org/10.5435/00124635-201001000-00006
Ferretti, G., Fagoni, N., Taboni, A., Vinetti, G., & di Prampero, P. E. (2022). A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol, 122(6), 1317-1365. https://doi.org/10.1007/s00421-022-04901-x
Fong, G. H. (2009). Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med (Berl), 87(6), 549-560. https://doi.org/10.1007/s00109-009-0458-z
Gellman, H., Chandler, D., Petrasek, J., Sie, I., Adkins, R., & Waters, R. (1988). Carpal tunnel syndrome in paraplegic patients. The Journal of bone and joint surgery. American volume, 70(4), 517-519.
Gershkovich, G., Arango, D., Shaffer, G. W., & Ndu, A. (2016). Weight bearing compliance after foot and ankle surgery. Foot & Ankle Orthopaedics, 1(1), 2473011416S2473000089.
Hackney, K. J., Bradley, A. P., Roehl, A. S., McGrath, R., & Smith, J. (2022). Energy Expenditure and Substrate Utilization with Hands-Free Crutches Compared to Conventional Lower-Extremity Injury Mobility Devices. Foot Ankle Orthop, 7(4), 24730114221139800. https://doi.org/10.1177/24730114221139800
Hather, B. M., Adams, G. R., Tesch, P. A., & Dudley, G. A. (1992). Skeletal muscle responses to lower limb suspension in humans. Journal of Applied Physiology, 72(4), 1493-1498.
Hefflin, B. J., Gross, T. P., & Schroeder, T. J. (2004). Estimates of medical device–associated adverse events from emergency departments. Am J Prev Med, 27(3), 246-253. https://doi.org/10.1016/j.amepre.2004.04.005
Herr, H., & Popovic, M. (2008). Angular momentum in human walking. J Exp Biol, 211(Pt 4), 467-481. https://doi.org/10.1242/jeb.008573
Holder, C. G., Haskvitz, E. M., & Weltman, A. (1993). The effects of assistive devices on the oxygen cost, cardiovascular stress, and perception of nonweight-bearing ambulation. Journal of Orthopaedic & Sports Physical Therapy, 18(4), 537-542.
Kaye, H. S., Kang, T., & LaPlante, M. P. (2000). Mobility Device Use in the United States. Disability Statistics Report 14.
Kubiak, E. N., Beebe, M. J., North, K., Hitchcock, R., & Potter, M. Q. (2013). Early weight bearing after lower extremity fractures in adults. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 21(12), 727-738.
Kurosawa, Y., Nirengi, S., Tabata, I., Isaka, T., Clark, J. F., & Hamaoka, T. (2022). Effects of Prolonged Sitting with or without Elastic Garments on Limb Volume, Arterial Blood Flow, and Muscle Oxygenation. Med Sci Sports Exerc, 54(3), 399-407. https://doi.org/10.1249/MSS.0000000000002822
Langer, N., Hänggi, J., Müller, N. A., Simmen, H. P., & Jäncke, L. (2012). Effects of limb immobilization on brain plasticity. Neurology, 78(3), 182-188. https://doi.org/10.1212/WNL.0b013e31823fcd9c
Lu, C., Saless, N., Wang, X., Sinha, A., Decker, S., Kazakia, G., . . . Marcucio, R. S. (2013). The role of oxygen during fracture healing. Bone, 52(1), 220-229. https://doi.org/10.1016/j.bone.2012.09.037
MacLennan, R. J., Sahebi, M., Becker, N., Davis, E., Garcia, J. M., & Stock, M. S. (2020). Declines in skeletal muscle quality vs. size following two weeks of knee joint immobilization. PeerJ, 8, e8224. https://doi.org/10.7717/peerj.8224
Magill, H. H. P., Hajibandeh, S., Bennett, J., Campbell, N., & Mehta, J. (2019). Open Reduction and Internal Fixation Versus Primary Arthrodesis for the Treatment of Acute Lisfranc Injuries: A Systematic Review and Meta-analysis. J Foot Ankle Surg, 58(2), 328-332. https://doi.org/10.1053/j.jfas.2018.08.061
Manocha, R. H. K., MacGillivray, M. K., Eshraghi, M., & Sawatzky, B. J. (2021). Injuries Associated with Crutch Use: A Narrative Review. PM R, 13(10), 1176-1192. https://doi.org/10.1002/pmrj.12514
Martin, K. D., Unangst, A. M., Huh, J., & Chisholm, J. (2019). Patient Preference and Physical Demand for Hands-Free Single Crutch vs Standard Axillary Crutches in Foot and Ankle Patients. Foot & ankle international, 40(10), 1203-1208.
Mcbeath, A. A., Bahrke, M., & Balke, B. (1974). Efficiency of assisted ambulation determined by oxygen consumption measurement. JBJS, 56(5), 994-1000.
McFall, B., Arya, N., Soong, C., Lee, B., & Hannon, R. (2004). Crutch induced axillary artery injury. The Ulster medical journal, 73(1), 50.
McLachlin, A. D., McLachlin, J. A., Jory, T. A., & Rawling, E. G. (1960). Venous stasis in the lower extremities. Annals of surgery, 152(4), 678.
Nielsen, D. H., Harris, J. M., Minton, Y. M., Motley, N. S., Rowley, J. L., & Wadsworth, C. T. (1990). Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking. Physical therapy, 70(8), 487-493.
Nolasco, L. A., Silverman, A. K., & Gates, D. H. (2019). Whole-body and segment angular momentum during 90-degree turns. Gait Posture, 70, 12-19. https://doi.org/10.1016/j.gaitpost.2019.02.003
Nott, C. R., Neptune, R. R., & Kautz, S. A. (2014). Relationships between frontal-plane angular momentum and clinical balance measures during post-stroke hemiparetic walking. Gait Posture, 39(1), 129-134. https://doi.org/10.1016/j.gaitpost.2013.06.008
Pickle, N. T., Silverman, A. K., Wilken, J. M., & Fey, N. P. (2017). Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps. IEEE Int Conf Rehabil Robot, 2017, 1609-1614. https://doi.org/10.1109/ICORR.2017.8009478
Pickle, N. T., Wilken, J. M., Aldridge, J. M., Neptune, R. R., & Silverman, A. K. (2014). Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses. J Biomech, 47(13), 3380-3389. https://doi.org/10.1016/j.jbiomech.2014.08.001
Rahman, R., Shannon, B. A., & Ficke, J. R. (2020). Knee Scooter–Related Injuries: A Survey of Foot and Ankle Orthopedic Surgeons. Foot & Ankle Orthopaedics, 5(1), 2473011420914561. https://doi.org/10.1177/2473011420914561
Raikin, S., & Froimson, M. I. (1997). Bilateral Brachial Plexus Compressive Neuropathy (Crutch Palsy). Journal of Orthopaedic Trauma, 11(2), 136-138.
Rambani, R., Shahid, M. S., & Goyal, S. (2007). The use of a hands-free crutch in patients with musculoskeletal injuries: randomized control trial. International Journal of Rehabilitation Research, 30(4), 357-359.
Rasouli, F., & Reed, K. B. (2020). Walking assistance using crutches: A state of the art review. J Biomech, 98, 109489. https://doi.org/10.1016/j.jbiomech.2019.109489
Reb, C. W., Haupt, E. T., Vander Griend, R. A., & Berlet, G. C. (2021). Pedal Musculovenous Pump Activation Effectively Counteracts Negative Impact of Knee Flexion on Human Popliteal Venous Flow. Foot Ankle Spec, 1938640021997275. https://doi.org/10.1177/1938640021997275
Robert, T., Bennett, B. C., Russell, S. D., Zirker, C. A., & Abel, M. F. (2009). Angular momentum synergies during walking. Exp Brain Res, 197(2), 185-197. https://doi.org/10.1007/s00221-009-1904-4
Rodriguez, P. G., Felix, F. N., Woodley, D. T., & Shim, E. K. (2008). The role of oxygen in wound healing: a review of the literature. Dermatol Surg, 34(9), 1159-1169. https://doi.org/10.1111/j.1524-4725.2008.34254.x
Sanders, M., Bowden, A. E., Baker, S., Jensen, R., Nichols, M., & Seeley, M. K. (2018). The influence of ambulatory aid on lower-extremity muscle activation during gait. Journal of sport rehabilitation, 27(3), 230-236.
Sankarankutty, M., Stallard, J., & Rose, G. (1979). The relative efficiency of ‘swing through’gait on axillary, elbow and Canadian crutches compared to normal walking. Journal of biomedical engineering, 1(1), 55-57.
Saragas, N. P., Ferrao, P. N., Saragas, E., & Jacobson, B. F. (2014). The impact of risk assessment on the implementation of venous thromboembolism prophylaxis in foot and ankle surgery. Foot Ankle Surg, 20(2), 85-89. https://doi.org/10.1016/j.fas.2013.11.002
Sen, C. K. (2009). Wound healing essentials: let there be oxygen. Wound Repair Regen, 17(1), 1-18. https://doi.org/10.1111/j.1524-475X.2008.00436.x
Seynnes, O. R., Maganaris, C. N., De Boer, M. D., Di Prampero, P. E., & Narici, M. V. (2008). Early structural adaptations to unloading in the human calf muscles. Acta physiologica, 193(3), 265-274.
Shabas, D., & Scheiber, M. (1986). Suprascapular neuropathy related to the use of crutches. American journal of physical medicine, 65(6), 298-300.
Sheehan, R. C., Beltran, E. J., Dingwell, J. B., & Wilken, J. M. (2015). Mediolateral angular momentum changes in persons with amputation during perturbed walking. Gait Posture, 41(3), 795-800. https://doi.org/10.1016/j.gaitpost.2015.02.008
Silverman, A. K., & Neptune, R. R. (2011). Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. J Biomech, 44(3), 379-385. https://doi.org/10.1016/j.jbiomech.2010.10.027
Silverman, A. K., Neptune, R. R., Sinitski, E. H., & Wilken, J. M. (2014). Whole-body angular momentum during stair ascent and descent. Gait Posture, 39(4), 1109-1114. https://doi.org/10.1016/j.gaitpost.2014.01.025
Sullivan, M., Eusebio, I. D., Haigh, K., Panti, J. P., Omari, A., & Hang, J. R. (2019). Prevalence of Deep Vein Thrombosis in Low-Risk Patients After Elective Foot and Ankle Surgery. Foot Ankle Int, 40(3), 330-335. https://doi.org/10.1177/1071100718807889
Tesch, P. A., Lundberg, T. R., & Fernandez-Gonzalo, R. (2016). Unilateral lower limb suspension: From subject selection to “omic” responses. J Appl Physiol (1985), 120(10), 1207-1214. https://doi.org/10.1152/japplphysiol.01052.2015
Tesch, P. A., Trieschmann, J. T., & Ekberg, A. (2004). Hypertrophy of chronically unloaded muscle subjected to resistance exercise. J Appl Physiol (1985), 96(4), 1451-1458. https://doi.org/10.1152/japplphysiol.01051.2003
Thys, H., Willems, P., & Saels, P. (1996). Energy cost, mechanical work and muscular efficiency in swing-through gait with elbow crutches. Journal of biomechanics, 29(11), 1473-1482.
Tripp, H. F., & Cook, J. W. (1998). Axillary artery aneurysms. Military medicine, 163(9), 653-655.
Vinay, K., Nagaraj, K., Arvinda, H. R., Vikas, V., & Rao, M. (2021). Design of a Device for Lower Limb Prophylaxis and Exercise. IEEE J Transl Eng Health Med, 9, 2100107. https://doi.org/10.1109/JTEHM.2020.3037018
Vistamehr, A., Kautz, S. A., Bowden, M. G., & Neptune, R. R. (2016). Corrigendum to “Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis” [J. Biomech. 49 (2016) 396-400]. J Biomech, 49(13), 3127. https://doi.org/10.1016/j.jbiomech.2016.08.001
Wiederien, R. C., Gari, W. J., & Wilken, J. M. (2023). Effect of crutch and walking-boot use on whole-body angular momentum during gait. Assist Technol, 1-9. https://doi.org/10.1080/10400435.2023.2229879
Yamaki, T., Hamahata, A., Fujisawa, D., Konoeda, H., Osada, A., Kono, T., . . . Sakurai, H. (2011). Deep vein thrombosis after total knee or hip arthroplasty is associated with increased preoperative calf muscle deoxygenation as measured by near-infrared spectroscopy. J Vasc Surg, 54(6 Suppl), 39S-47S. https://doi.org/10.1016/j.jvs.2011.05.089
Yeoh, J., Ruta, D., Murphy, G. A., Richardson, D., Ishikawa, S., Grear, B., & Bettin, C. (2017). Post-Operative Use of the Knee Walker After Foot and Ankle Surgery, A Retrospective Study. Foot & Ankle Orthopaedics, 2(3), 2473011417S2473000419.
Zhang, X., Schwarz, E. M., Young, D. A., Puzas, J. E., Rosier, R. N., & O’Keefe, R. J. (2002). Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest, 109(11), 1405-1415. https://doi.org/10.1172/jci15681